DS N°2 DE MATHÉMATIQUES

Lundi 4 Novembre 2024, de 8h à 12h

Calculatrice non autorisée

Éléments de présentation de la copie : Tout manquement aux règles suivantes sera fortement pénalisé.

- Il est interdit de faire des ratures. Vos recherches doivent être faîtes au brouillon.
- Pour barrer un paragraphe : on l'encadre entre deux traits horizontaux puis on barre le contenu proprement. Tout cela à la règle.
- Pour barrer une phrase : on utilise une règle.
- Vos résultats doivent être mis en évidence (proprement surlignés au marqueur, encadrés ou soulignés à la règle)
- Vos pages doivent être numérotées suivant le format page n°... / nombre total de pages.

Par ailleurs, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entrent pour une part importante dans l'appréciation des copies.

Exercice n°1:

On considère la fonction f définie, pour tout x > 0, par $f(x) = x + 1 + \frac{x - 1 + \ln(x)}{x^2}$.

On admet pour la suite que f est dérivable sur \mathbb{R}_{+}^{\star} .

- 1. Python: Ecrire une fonction Python fonction(x) prenant pour argument x et qui renvoie la valeur de f(x) si $x \in \mathbb{R}_+^*$ et la chaîne de caractère: "x n'appartient pas à \mathbb{R}_+^* " lorsque $x \notin \mathbb{R}_+^*$.
- **2.** On introduit la fonction auxiliaire g définie, pour tout x > 0, par $g(x) = x^3 x + 3 2\ln(x)$ et la fonction polynôme P définie sur \mathbb{R} par $P: x \mapsto 3x^3 x 2$.

On admet pour la suite que g est dérivable sur \mathbb{R}_+^* .

- a) Déterminer une racine évidente $\alpha \in \mathbb{R}$ de P, puis montrer qu'il existe $a, b, c \in \mathbb{R}$ tels que, pour tout $x \in \mathbb{R}$, $P(x) = (x \alpha)(ax^2 + bx + c)$.
- b) En déduire le signe de P sur \mathbb{R} .
- c) Montrer que, pour tout $x \in \mathbb{R}_+^*$, on a : $g'(x) = \frac{P(x)}{x}$.
- d) En déduire les variations de g sur son ensemble de définition (on ne demande pas les limites)
- e) En déduire le signe de g(x) pour $x \in \mathbb{R}_+^*$.
- **3.** Etude de la fonction f.
 - a) Montrer que, pour tout $x \in \mathbb{R}_+^*$, on a : $f'(x) = \frac{g(x)}{x^3}$.
 - b) En déduire les variations de f.

Exercice n°2:

Les questions 1. et 2. sont indépendantes.

- 1. Déterminer une racine évidente de $2x^2 + 3x + 1$. A l'aide d'une division euclidienne, en déduire une factorisation de $2x^2 + 3x + 1$ sous la forme (ax + b)(cx + d) où a, b, c, d sont à préciser.
- **2.** Résoudre sur \mathbb{R} l'équation $4x^2 + 8x + 3 = 0$. En déduire une factorisation de $4x^2 + 8x + 3$ sous la forme (ax + b)(cx + d) où a, b, c, d sont à préciser.
- **3.** A l'aide des résultats des questions **1.** et **2.**, démontrer par récurrence que, pour tout $n \in \mathbb{N}^{\geq 1}$,

$$\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{n}{2n+1}.$$

Exercice n°3:

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=-3/4$ et, pour tout $n\in\mathbb{N}, u_{n+1}=-\frac{3+4u_n}{1+2u_n}$

On admet que $(u_n)_{n\in\mathbb{N}}$ est bien définie et que $u_n\neq -1$.

- 1. Python: Ecrire une fonction Python suite1(n) qui prend en argument un entier naturel n et qui renvoie la valeur u_n .
- **2.** On introduit une suite auxiliaire $(w_n)_{n\in\mathbb{N}}$ définie, pour tout $n\in\mathbb{N}$, par $w_n=\frac{1}{u_n+1}$.
 - a) Montrer que l'on a, pour tout $n \in \mathbb{N}$,

$$w_{n+1} = \frac{1}{2}w_n - 1.$$

- b) Déterminer l'expression de w_n en fonction de n.
- **3.** Déterminer l'expression de u_n pour tout $n \in \mathbb{N}$.

On admet que $(u_n)_{n\in\mathbb{N}}$ est croissante à partir d'un certain rang et que $\lim_{n\to+\infty}u_n=-\frac{3}{2}$.

4. Python : Ecrire une fonction Python seuil (M) qui prend en argument un réel M > 0 et qui revoie le premier rang n en lequel $-\frac{3}{2} - M < u_n < -\frac{3}{2}$.

Exercice n°4:

Soit f la fonction rationnelle définie par :

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \frac{1}{x(x+1)(x+2)}.$$

1. Déterminer trois réels a, b et c tels que :

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{x+2}.$$

- **2.** Dans cette question, l'objectif est de calculer $S_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$.
 - a) Python: Ecrire une fonction Python somme1(n) prenant en argument un entier naturel n différent de zéro et renvoyant la valeur de S_n .
 - **b)** Montrer que pour tout $n \in \mathbb{N}^{\geq 1}$:

$$S_n = \frac{1}{2} \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1} \right) - \frac{1}{2} \sum_{k=1}^n \left(\frac{1}{k+1} - \frac{1}{k+2} \right).$$

c) En déduire la valeur de la somme S_n pour tout $n \in \mathbb{N}^{\geq 1}$.

Exercice n°5:

On considère la suite $(u_n)_{n\in\mathbb{N}^{\geq 1}}$ définie par la relation de récurrence suivante :

$$\forall n \in \mathbb{N}^{\geq 1}, \quad u_{n+2} = -3u_{n+1} + 18u_n,$$

avec $u_1 = -2$ et $u_2 = 2$.

- 1. Python: En utilisant la définition par récurrence de $(u_n)_{n\in\mathbb{N}^{\geq 1}}$, écrire une fonction Python suite2(n) qui prend en argument un entier naturel n supérieur à 1 et qui renvoie la valeur u_n .
- 2. Python: En utilisant la fonction suite2(n) de la question précédente, écrire une fonction somme2(n) prenant en argument un entier naturel supérieur à 1 et renvoyant la valeur de la somme $\sum_{k=1}^{n} u_k$.
- 3. Déterminer une expression explicite de u_n en fonction de n.
- **4.** Soit $n \in \mathbb{N}^{\geq 1}$. En déduire une expression explicite de $\sum_{k=1}^{n} u_k$.

Exercice n°6:

L'objectif de cet exercice est d'étudier deux méthodes permettant de calculer la somme $\sum_{k=1}^{n} k2^{k}$.

Les deux parties de cet exercice sont indépendantes

Partie I : à l'aide de suites auxiliaires

On considère deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par $a_0=0,\,b_0=1$ et pour tout $n\in\mathbb{N}$:

$$a_{n+1} = 2a_n + b_n$$
 et $b_{n+1} = 2b_n$.

- 1. Soit $n \in \mathbb{N}$. Donner une expression explicite de b_n en fonction de n.
- **2.** On considère la suite auxiliaire $(c_n)_{n\in\mathbb{N}}$ définie, pour tout $n\in\mathbb{N}$, par $c_n=\frac{a_n}{2^n}$.
 - a) Justifier que $(c_n)_{n\in\mathbb{N}}$ est arithmétique et préciser sa raison. En déduire une expression explicite de c_n en fonction de n.
 - **b)** En déduire que, pour tout $n \in \mathbb{N}$, $a_n = n2^{n-1}$.
- **3.** a) Justifier que, pour tout $k \in \mathbb{N}$, $a_k = a_{k+1} a_k 2^k$.
 - **b)** Soit $n \in \mathbb{N}^{\geq 1}$. Donner la valeur de $\sum_{k=1}^{n} 2^k$.
 - c) Soit $n \in \mathbb{N}$. Déduire des questions précédentes que : $\sum_{k=1}^n k 2^{k-1} = (n-1)2^n + 1$
 - d) Donner une expression explicite de $\sum_{k=1}^{n} k2^{k}$ en fonction de n.

Partie II: à l'aide d'une intégration par parties discrète (méthode d'Abel)

Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites. On définie $(A_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ par :

$$\forall n \in \mathbb{N}, \quad A_n = \sum_{k=1}^n a_k, \quad B_n = \sum_{k=1}^n b_k \quad \text{et} \quad A_0 = 0, \quad B_0 = 0.$$

- **4.** Soit $n \in \mathbb{N}^{\geq 1}$. Justifier que $a_n = A_n A_{n-1}$.
- 5. Soit $N \in \mathbb{N}^{\geq 1}$. Démontrer que $\sum_{n=1}^{N} a_n B_n = A_N B_N \sum_{n=1}^{N-1} A_n b_{n+1}$.
- **6.** En appliquant la relation précédente à des suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ bien choisies, déterminer une expression explicite de $\sum_{n=1}^{N} 2^n n$ en fonction de N.

*** Fin du sujet ***