DS n°3 de Mathématiques

Lundi 8 Janvier 2024, de 8h à 12h

Calculatrice non autorisée

Éléments de présentation de la copie : Tout manquement aux règles suivantes sera fortement pénalisé.

- Il est interdit de faire des ratures. Vos recherches doivent être faîtes au brouillon.
- Pour barrer un paragraphe : on l'encadre entre deux traits horizontaux puis on le marque d'une croix. Tout cela à la règle.
- Pour barrer une phrase : on utilise une règle.
- Vos résultats doivent être mis en évidence (proprement surlignés au marqueur, encadrés ou soulignés à la règle)
- Vos pages doivent être numérotées suivant le format page n°... / nombre total de pages.

Par ailleurs, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entrent pour une part importante dans l'appréciation des copies.

Exercice n°1:

Soit $k \in \mathbb{R}$. On considère le système

$$(S_k) : \begin{cases} -x + 2y - z = -5 \\ x - 4y + 2z = 7 \\ -2x - 2y + 2kz = -4 \end{cases}$$

- 1. Dans cette question seulement, on suppose que k = 1. Déterminer l'ensemble des solutions de (S_k) .
- **2.** Dans cette question seulement, on suppose que $k = \frac{1}{2}$. Déterminer l'ensemble des solutions de (S_k) .
- **3.** Dans cette question, k est un réel quelconque.
 - a) Pour quelle(s) valeur(s) du paramètre k le système (S_k) est-il de Cramer?
 - b) Déterminer l'ensemble des solutions de ce système en fonction du paramètre $k \in \mathbb{R}$.

Exercice n°2:

On considère la suite $(R_n)_{n\in\mathbb{N}^{\geq 1}}$ définie, pour tout $n\in\mathbb{N}^{\geq 1}$, par

$$R_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}.$$

- **1.** Montrer que, pour tout $k \in \mathbb{N}^{\geq 1}$, $\sqrt{k+1} \sqrt{k} \leq \frac{1}{\sqrt{k}}$.
- **2.** Soit $n \in \mathbb{N}^{\geq 1}$. Déduire de la question précédente que : $\sqrt{n+1} 1 \leq R_n$.
- **3.** En déduire que la suite $(R_n)_{n\in\mathbb{N}^{\geq 1}}$ possède une limite et la préciser.

Exercice n°3:

On considère les matrices carrées A et B définies par :

$$A = \begin{bmatrix} 4 & -1 & -1 \\ 1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \quad \text{et} \quad B = A - 2I_3.$$

- 1. a) Calculer B, B^2 et B^3 .
 - **b)** En déduire B^n pour $n \in \mathbb{N}^{\geq 3}$.
- **2.** A l'aide d'un raisonnement par récurrence, montrer que, pour tout $n \in \mathbb{N}$, on a :

$$A^{n} = 2^{n}I_{3} + n2^{n-1}B + n(n-1)2^{n-3}B^{2}.$$

3. Dans cette question on considère les suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ définies par leurs premiers termes : $u_0 = 1$, $v_0 = 0$, $w_0 = 0$ et, pour tout $n \in \mathbb{N}$, par :

$$\begin{cases} u_{n+1} = 4u_n - v_n - w_n \\ v_{n+1} = u_n + v_n \\ w_{n+1} = 2u_n - v_n + w_n \end{cases}$$

On note, pour tout $n \in \mathbb{N}, X_n = \begin{bmatrix} u_n \\ v_n \\ w_n \end{bmatrix}$.

- a) Soit $n \in \mathbb{N}$. Justifier que $X_{n+1} = AX_n$.
- b) En raisonnant par récurrence, montrer que, pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$.
- c) Déduire des questions précédentes les expressions de u_n , v_n et w_n en fonction de $n \in \mathbb{N}$.

Exercice n°4:

On considère la suite (S_n) définie, pour tout $n \in \mathbb{N}^{\geq 1}$, par

$$S_n = \sum_{k=1}^n (-1)^k \frac{\ln(k)}{k}.$$

On considère également la fonction f définie, pour tout $x \in]0; +\infty[$, par $f(x) = \frac{\ln(x)}{x}$. On admet que f est dérivable sur $]0; +\infty[$ et que 2 < e < 3.

- 1. Montrer que f est décroissante sur $[3; +\infty[$.
- **2.** En déduire que les suites $(S_{2n})_{n\geq 1}$ et $(S_{2n+1})_{n\geq 1}$ sont adjacentes.
- **3.** La suite (S_n) converge-t-elle? Justifier.

Exercice n°5:

On considère la matrice $A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$.

- 1. a) Calculer A^2 , puis vérifier que $A^2 = 2A + 3I_4$.
 - b) Montrer par récurrence que, pour tout entier naturel n, il existe deux réels a_n et b_n tels que :

$$A^n = a_n A + b_n I_4$$

vérifiant, pour tout entier naturel n, $a_{n+1} = 2a_n + b_n$ et $b_{n+1} = 3a_n$.

- **2.** Expliciter les 9 coefficients de A^n , pour $n \in \mathbb{N}$, en fonction de a_n et b_n .
- **3.** a) Montrer que, pour entier naturel n non nul, $a_{n+2} = 2a_{n+1} + 3a_n$.
 - b) Déterminer, pour tout entier naturel n, une expression de a_n en fonction de n.
 - c) En déduire, pour tout entier naturel n, une expression de b_n en fonction de n.

Problème

On considère la fonction f définie, pour tout $x \in]0; +\infty[$, par $f(x) = x \ln\left(1 + \frac{1}{x}\right)$.

On admet que f est dérivable sur $]0; +\infty[$ et que sa dérivée f' est dérivable sur $]0; +\infty[$. On notera f'' la dérivée de f'.

On considère également la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n) = u_n \ln \left(1 + \frac{1}{u_n} \right) \end{cases}$$

On admettra que $\ 2 < e < 3$, et que $\ \frac{1}{2} < \ln(2) < 1$.

Partie I : Etude des fonctions f' et f

- 1. Montrer que la fonction f possède un unique point fixe α que vous expliciterez. Justifier que $0 < \alpha < 1$.
- **2.** Pour tout $x \in]0; +\infty[$, calculer f'(x) puis f''(x).
- 3. En déduire que f' est strictement décroissante sur $]0; +\infty[$. Calculer les limites en 0^+ et en $+\infty$ de la fonction f'.
- **4.** En déduire que f est strictement croissante sur $]0; +\infty[$.
- 5. Python : Ecrire un programme python permettant de réaliser une représentation graphique de la fonction f sur le segment $[\alpha; 1]$. Cette représentation doit comporter un titre et une légende.

Partie II : Etude du comportement asymptotique de la suite $(u_n)_{n\in\mathbb{N}}$

L'objectif de cette partie est d'étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ de deux façons différentes. On utilisera, en cas de nécessité, les résultats de la partie I. Dans ce cas, on précisera clairement les résultats de la partie I utilisés ainsi que les numéros des questions associées.

- **6.** Montrer que, pour tout $n \in \mathbb{N}$, u_n est bien définie et que $\alpha < u_n \le 1$.
- 7. Python : Ecrire un programme qui demande à l'utilisateur un entier n positif et qui affiche la valeur de u_n .
- 8. Première étude de la convergence de $(u_n)_{n\in\mathbb{N}}$
 - a) Etudier le signe de l'expression f(x) x sur $[0; +\infty[$.
 - b) En déduire que la suite (u_n) est décroissante.
 - c) En déduire que (u_n) converge et que sa limite est α . Justifier soigneusement.
 - d) Python: Ecrire une fonction python prenant pour argument un réel $\varepsilon > 0$ et renvoyant la valeur du premier rang n tel que $|u_n \alpha| \le \varepsilon$.
- 9. Seconde étude de la convergence de $(u_n)_{n\in\mathbb{N}}$
 - a) Justifier que, pour tout $x \in [\alpha; 1], 0 \le f'(x) \le \frac{1}{2}$.
 - **b)** En déduire que, pour tout $x \in [\alpha; 1]$, on a :

$$0 \le f(x) - \alpha \le \frac{1}{2}(x - \alpha).$$

c) En déduire que, pour tout $k \in \mathbb{N}$, on a :

$$0 \le \frac{u_{k+1} - \alpha}{u_k - \alpha} \le \frac{1}{2}.$$

- **d)** En déduire que, pour tout $n \in \mathbb{N}$, $0 \le u_n \alpha \le \frac{1-\alpha}{2^n}$.
- e) Justifier de nouveau que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers α .