DS n°3 de Mathématiques

Lundi 6 Janvier 2025, de 8h à 12h

Calculatrice non autorisée

Éléments de présentation de la copie : Tout manquement aux règles suivantes sera fortement pénalisé.

- Il est interdit de faire des ratures. Vos recherches doivent être faîtes au brouillon.
- Pour barrer un paragraphe : on l'encadre entre deux traits horizontaux puis on barre le contenu proprement. Tout cela à la règle.
- Pour barrer une phrase : on utilise une règle.
- Vos résultats doivent être mis en évidence (proprement surlignés au marqueur, encadrés ou soulignés à la règle)
- Vos pages doivent être numérotées suivant le format page n°... / nombre total de pages.

Par ailleurs, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entrent pour une part importante dans l'appréciation des copies.

Exercice n°1:

1. Résoudre dans \mathbb{R}^3 le système linéaire suivant :

$$(S_1) \begin{cases} 3x + 3y + 2z = 0 \\ 2x + y + z = 0 \\ x + 2y + z = 0 \end{cases}$$

2. Soient $a, b, c \in \mathbb{R}$. Résoudre dans \mathbb{R}^3 le système linéaire suivant :

$$(S_2) \begin{cases} x + 2y + z = a \\ 3x + 5y - z = b \\ 4x + 6y + 4z = c \end{cases}$$

3. On considère le système linéaire suivant où $k \in \mathbb{R}$ est un paramètre

$$(S_3) \begin{cases} (1-k)x + y + z = 0 \\ x + (1-k)y + z = 0 \\ x + y + (3-k)z = 0 \end{cases}$$

- a) Montrer que le système linéaire (S_3) est de Cramer si et seulement si $k \in \mathbb{R} \setminus \{0; 1; 4\}$.
- **b)** Résoudre le système (S_3) dans les cas $k \in \mathbb{R} \setminus \{0; 1; 4\}$, puis k = 0.

Exercice n°2:

On considère les matrices carrées A et B définies par :

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 1 & 3 & 0 \\ -1 & 0 & 3 \end{bmatrix} \quad \text{et} \quad B = A - 3I_3.$$

- a) Calculer B, B^2 et B^3 .
 - **b)** En déduire B^n pour $n \in \mathbb{N}^{\geq 3}$.
- **2.** A l'aide d'un raisonnement par récurrence, montrer que, pour tout $n \in \mathbb{N}$, on a

$$A^{n} = 3^{n} I_{3} + n3^{n-1}B + \frac{n(n-1)}{2}3^{n-2}B^{2}.$$

- **3.** Expliciter les 3 coefficients de la seconde colonne de la matrice A^n pour $n \in \mathbb{N}$.
- 4. Dans cette question on considère les suites réelles $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}, (w_n)_{n\in\mathbb{N}}$ définies par leurs premiers termes: $u_0 = 0$, $v_0 = 3$, $w_0 = 0$ et, pour tout $n \in \mathbb{N}$, par:

$$\begin{cases} u_{n+1} = 3u_n + 2v_n + 2w_n \\ v_{n+1} = u_n + 3v_n \\ w_{n+1} = -u_n + 3w_n \end{cases}$$

On note, pour tout $n \in \mathbb{N}$, $X_n = \begin{bmatrix} u_n \\ v_n \\ w_n \end{bmatrix}$.

- a) Soit $n \in \mathbb{N}$. Justifier que $X_{n+1} = AX_n$.
- b) En raisonnant par récurrence, montre que, pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$.
- c) Déduire des questions précédentes les expressions de u_n , v_n et w_n en fonction de $n \in \mathbb{N}$.

Exercice n°3:

On admet que: $\forall n \in \mathbb{N}^{\geq 1}, \ 2^n \geq n+1.$

1. On considère les suites $(u_n)_{n\in\mathbb{N}^{\geq 1}}$ et $(v_n)_{n\in\mathbb{N}^{\geq 1}}$ définies, pour tout $n\in\mathbb{N}^{\geq 1}$, par :

$$u_n = \sum_{k=1}^n \frac{1}{k2^k}$$
 et $v_n = u_n + \frac{1}{n} - \frac{1}{n2^n}$.

- a) Montrer que les suites (u_n) et (v_n) sont adjacentes.
- b) Que peut-on en déduire?
- 2. Ecrire une fonction Python somme(n) qui prend en argument un entier naturel non nul n et qui renvoie la valeur de u_n .

Exercice n°4:

On considère la matrice $A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$.

- a) Calculer $A^2 A$.
 - b) Montrer par récurrence que, pour tout entier naturel n, il existe deux réels a_n et b_n tels que :

$$A^n = a_n A + b_n I_3,$$

vérifiant, pour tout entier naturel n, $a_{n+1} = a_n + b_n$ et $b_{n+1} = 2a_n$.

- c) Donner la valeur de a_1 puis de b_1 .
- 2. A l'aide des relations de récurrence vérifiées par (a_n) , (b_n) et obtenues à la question 1., écrire une fonction Python recurrence(n) prenant en argument un entier naturel n et renvoyant le couple (a_n, b_n) .
- a) Montrer que, pour entier naturel n non nul, $a_{n+2} = a_{n+1} + 2a_n$.
 - b) Déterminer, pour tout entier naturel n, une expression de a_n en fonction de n.
 - c) En déduire, pour tout entier naturel n, une expression de b_n en fonction de n.
 - d) En déduire les 9 coefficients de la matrice A^n en fonction de n.

Exercice n°5:

On considère la fonction f définie sur $]1; +\infty[$ telle que, pour tout $x \in]1; +\infty[$, $f(x) = \frac{x}{\ln x}$.

On admet que f est dérivable sur son ensemble de définition.

On considère également la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n) = \frac{u_n}{\ln(u_n)} \end{cases}$$

Valeur numérique : on rappelle que 2 < e < 3.

- **1.** Calculer les limites de f en 1^+ et $+\infty$.
- **2.** Pour tout $x \in]1; +\infty[$, calculer f'(x).
- 3. Dresser le tableau de variation de f sur son ensemble de définition.
- **4.** a) Résoudre l'équation f(x) = x sur $]1; +\infty[$.
 - **b)** Déterminer le signe de f(x) x sur $]1; +\infty[$.
- **5.** a) Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n \geq e$.
 - b) Justifier que la suite (u_n) est décroissante.
 - c) Démontrer que la suite (u_n) converge et déterminer sa limite.
 - d) Ecrire une fonction Python suite(n) prenant en argument un entier naturel n et renvoyant la valeur de u_n .
 - e) Expliquer l'intérêt du script Python suivant :

```
import numpy as np
import matplotlib.pyplot as plt
n = int(input('Entrez un entier n non nul'))
Lx = np.arange(n+1)
Ly = []
for k in range(n+1) :
        Ly.append(suite(k))
plt.plot(Lx,Ly)
plt.show()
```

- **6.** L'objectif de cette question est de démontrer d'une autre manière que $(u_n)_{n\in\mathbb{N}}$ converge et de déterminer sa limite.
 - a) Justifier que, pour tout $x \in [e; +\infty[, 0 \le f'(x) \le \frac{1}{4}]$.
 - **b)** En déduire que, pour tout $x \in [e; +\infty[, 0 \le f(x) \le \frac{1}{4}x + \frac{3}{4}e]$.
 - c) En déduire que, pour tout $n \in \mathbb{N}$, on a :

$$0 \le u_{n+1} - e \le \frac{1}{4}(u_n - e).$$

- d) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $0 \le u_n e \le \frac{1}{4^n}$.
- e) Retrouver ainsi la convergence de $(u_n)_{n\in\mathbb{N}}$ et sa limite.
- 7. En utilisant le résultat de la question 7., déterminer un entier naturel n tel que $0 \le u_n e \le 10^{-10}$. On donne $2, 3 < \frac{\ln(5)}{\ln(2)} < 2, 4$.
- 8. Soit $\varepsilon > 0$. Expliquer l'intérêt de la fonction Python suivante :

 $\star\star\star$ Fin du sujet $\star\star\star$