DS N°4 DE MATHÉMATIQUES

Lundi 3 Mars 2025, de 8h à 12h

Calculatrice non autorisée

Éléments de présentation de la copie : Tout manquement aux règles suivantes sera fortement pénalisé.

- Il est interdit de faire des ratures. Vos recherches doivent être faîtes au brouillon.
- Pour barrer un paragraphe : on l'encadre entre deux traits horizontaux puis on barre le contenu proprement. Tout cela à la règle.
- Pour barrer une phrase : on utilise une règle.
- Vos résultats doivent être mis en évidence (proprement surlignés au marqueur, encadrés ou soulignés à la règle)
- Vos pages doivent être numérotées suivant le format page n°... / nombre total de pages.

Par ailleurs, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entrent pour une part importante dans l'appréciation des copies.

Exercice

Les questions suivantes sont indépendantes :

1. Soit $n \in \mathbb{N}^{\geq 2}$. Donner la valeur des sommes suivantes :

$$S_1 = \sum_{k=0}^n \binom{n}{k}, \qquad S_2 = \sum_{k=0}^n (-1)^k \binom{n}{k} \qquad \text{et} \qquad S_3 = \sum_{k=1}^{n-1} \frac{\binom{n}{k}}{2^k}$$

2. Calculer les sommes doubles suivantes :

$$S_4 = \sum_{1 \le i, j \le n} j$$
 et $S_5 = \sum_{1 \le i < j \le n} j$

Problème n°1: (ECRICOME ECT 2024 Exercice n°1)

On considère trois suites $(r_n)_{n\in\mathbb{N}}$, $(s_n)_{n\in\mathbb{N}}$ et $(t_n)_{n\in\mathbb{N}}$ définies par la donnée de $r_0=2$, $s_0=10$ et $t_0=1$

et, pour tout entier naturel
$$n$$
,
$$\begin{cases} r_{n+1} &= -\frac{1}{4}s_n + 2t_n \\ s_{n+1} &= r_n + s_n - t_n \\ t_{n+1} &= \frac{1}{2}t_n + 1 \end{cases}$$

On introduit les matrices

$$A = \frac{1}{4} \begin{bmatrix} 0 & -1 & 8 \\ 4 & 4 & -4 \\ 0 & 0 & 2 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \text{et} \quad C = \begin{bmatrix} 2 \\ 8 \\ 2 \end{bmatrix}.$$

Pour tout entier naturel n, on pose également $X_n = \begin{bmatrix} r_n \\ s_n \\ t_n \end{bmatrix}$.

- 1. On pose M = A I.
 - a) Expliciter la matrice M.
 - b) Calculer $(2M+I)^3$.
 - c) En déduire que $M(8M^2 + 12M + 6I) = -I$.
 - d) En déduire que M est inversible et donner son inverse en fonction de M et de I.
- **2.** Montrer que, pour tout entier naturel n, $X_{n+1} = AX_n + B$.
- 3. Dans Python, on importe la bibliothèque numpy à l'aide de la commande import numpy as np
 - a) Ecrire un script Python permettant de définir la matrice A. Faire de même pour B.
 - b) Rappeler la commande permettant de réaliser un produit matricielle.
 - c) A l'aide de la question 2., écrire une fonction Python suite1X(n) prenant en argument un entier naturel n et renvoyant la matrice X_n .
- **4.** a) Vérifier que AC + B = C.
 - b) Montrer que I A est inversible.
 - c) En déduire que C est l'unique matrice colonne telle que X = AX + B.
- **5.** Montrer par récurrence que, pour tout entier naturel $n, X_n C = A^n(X_0 C)$.
- 6. Dans Python, on importe la bibliothèque numpy.linalg à l'aide de la commande import numpy.linalg as al
 - a) Rappeler la commande permettant de calculer la puissance n-ième d'une matrice.
 - b) A l'aide de la question 5., écrire une fonction $\mathtt{suite2X(n)}$ qui prend en argument un entier naturel n et qui renvoie la matrice X_n .

On définit les matrices

$$P = \frac{1}{6} \begin{bmatrix} -3 & 6 & 4 \\ 6 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \qquad Q = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 1 & -2 \\ 0 & 0 & 3 \end{bmatrix} \qquad \text{et} \qquad T = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

On admet que $A = \frac{1}{4}PTQ$.

- 7. a) Calculer QP.
 - b) En déduire que P est inversible et donner son inverse à l'aide de la matrice Q.
 - c) Montrer que, pour tout entier naturel n, $A^n = \frac{1}{2^{n+1}}PT^nQ$.
 - d) Montrer que, pour tout entier naturel n,

$$T^n = \begin{bmatrix} 1 & 2n & 2n(n-1) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{bmatrix}.$$

On admet alors que, pour tout entier naturel n,

$$A^{n} = \frac{1}{2^{n+1}} \begin{bmatrix} -2n+2 & -n & -3n^{2}+11n \\ 4n & 2n+2 & 6n^{2}-10n \\ 0 & 0 & 2 \end{bmatrix}.$$

- **8.** En déduire l'expression explicite de chacune des suites $(r_n)_{n\in\mathbb{N}}$, $(s_n)_{n\in\mathbb{N}}$ et $(t_n)_{n\in\mathbb{N}}$.
- **9.** Déterminer les limites des trois suites $(r_n)_{n\in\mathbb{N}}$, $(s_n)_{n\in\mathbb{N}}$ et $(t_n)_{n\in\mathbb{N}}$.

Problème n°2: (Etude de deux sommes binomiales)

Partie I : Formule d'itération de Pascal

- 1. Rappeler la formule de Pascal.
- **2.** Soient $p, n \in \mathbb{N}$ tels que $p \leq n$.
 - a) Déduire de la question précédente une écrire, sous la forme d'un coefficient binomial, de l'expression

$$\binom{n+1}{p} + \binom{n+1}{p+1}.$$

b) Montrer par récurrence que, pour tout $n \in \mathbb{N}^{\geq p}$, on a

$$\sum_{k=p}^{n} \binom{k}{p} = \binom{n+1}{p+1} \tag{*}$$

3. Application

a) Rappeler les valeurs sous forme fractionnaire et sans factorielle des coefficients binomiaux suivants :

$$\binom{n}{1} \text{ pour } n \in \mathbb{N}^{\geq 1}, \qquad \binom{n}{2} \text{ pour } n \in \mathbb{N}^{\geq 2} \qquad \text{et} \qquad \binom{n}{3} \text{ pour } n \in \mathbb{N}^{\geq 3}$$

- **b)** En appliquant la relation (\star) dans le cas p=1, retrouver la valeur de la somme $\sum_{k=1}^{n} k$.
- c) De même, en appliquant la relation (\star) dans le cas p=2, retrouver la relation

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Partie II: Somme des inverses des termes d'une colonne du triangle de Pascal

4. a) Réaliser un triangle de Pascal permettant de calculer les coefficients binomiaux $\binom{n}{k}$ pour $0 \le n, k \le 6$.

b) En déduire la valeur de la somme $\sum_{k=3}^{6} \frac{1}{\binom{k}{3}}$.

5. L'objectif est d'établir, pour tous $n, p \in \mathbb{N}$ tels que $2 \leq p \leq n$, la relation suivante

$$\sum_{k=p}^{n} \frac{1}{\binom{k}{p}} = \frac{p}{p-1} \left(1 - \frac{1}{\binom{n}{p-1}} \right) \tag{**}$$

a) En appliquant cette relation, retrouver votre résultat de la question 6.b).

b) Etablir la relation
$$(p-1)\binom{k-1}{p-1}\binom{k}{p-1} = p\binom{k-1}{p-2}\binom{k}{p}$$
.

c) En déduire que

$$\frac{1}{\binom{k}{p}} = \frac{p}{p-1} \frac{\binom{k-1}{p-2}}{\binom{k-1}{p-1}\binom{k}{p-1}},$$

puis que

$$\frac{1}{\binom{k}{p}} = \frac{p}{p-1} \left(\frac{1}{\binom{k-1}{p-1}} - \frac{1}{\binom{k}{p-1}} \right).$$

- d) En déduire la formule $(\star\star)$.
- **6.** Soit $p \in \mathbb{N}$.
 - a) Montrer que, pour tous $n \in \mathbb{N}$ tels que $p \le n$, $\frac{(n-p)^p}{p!} \le \binom{n}{p}$.
 - **b)** Montrer que $\lim_{n\to+\infty} \binom{n}{p}$ existe et donner sa valeur.
 - c) En déduire que $\lim_{n\to+\infty}\sum_{k=p}^{n}\frac{1}{\binom{k}{p}}$ existe et donner sa valeur.

Problème n°3: (Banque PT 2023, Exercice n°1)

On considère les parties de $\mathcal{M}_3(\mathbb{R})$ suivantes :

$$\mathcal{N} = \left\{ M \in \mathcal{M}_3(\mathbb{R}) \mid M^3 = 0_3 \right\} \qquad \text{et} \qquad \mathcal{E} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

On considère également l'ensemble \mathcal{U} des matrices dites unipotentes de $\mathcal{M}_3(\mathbb{R})$ qui s'écrivent U = I + N, où $N \in \mathcal{E}$ et I est la matrice identité de $\mathcal{M}_3(\mathbb{R})$.

Autrement dit $U \in \mathcal{U}$ s'il existe $a, b, c \in \mathbb{R}$ tel que $U = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$.

Enfin, on définit les matrices

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \text{et} \qquad C = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

- 1. Etude de \mathcal{N} .
 - a) Vérifier que les matrices A et B appartiennent à \mathcal{N} .
 - b) En déduire que la somme et le produit de deux matrices de \mathcal{N} n'appartiennent pas nécessairement à \mathcal{N} .
 - c) Montrer que $\mathscr{E} \subset \mathcal{N}$.
- **2.** Etude de \mathscr{E} .
 - a) Soient $N, M \in \mathcal{E}$. Montrer que \mathcal{E} est stable par somme, c'est-à-dire que $N+M \in \mathcal{E}$.
 - b) Soient $N, M \in \mathcal{E}$. Montrer que \mathcal{E} est stable par produit, c'est-à-dire que $NM \in \mathcal{E}$.
- 3. Etude de \mathcal{U} .
 - a) Montrer que \mathcal{U} est stable par produit.
 - b) Justifier que les matrices de \mathcal{U} sont inversibles.
- **4.** Soient $U \in \mathcal{U}$ et $N \in \mathscr{E}$ telles que U = I + N. Pour tout $\alpha \in \mathbb{R}$, on définit la matrice $U_{(\alpha)}$ par

$$U_{(\alpha)} = I + \alpha N + \frac{\alpha(\alpha - 1)}{2} N^2.$$

- a) Calculer $C_{(\alpha)}$ pour $\alpha \in \mathbb{R}$ où C est la matrice définie en préambule.
- **b)** Vérifier que, pour tout $\alpha \in \mathbb{R}$, $U_{(\alpha)} \in \mathscr{E}$.
- c) Montrer que, pour tous $\alpha, \beta \in \mathbb{R}$, on a

$$U_{(\alpha)}U_{(\beta)} = U_{(\alpha+\beta)}$$
 et $(U_{(\alpha)})_{(\beta)} = U_{(\alpha\beta)}$.

- d) A l'aide d'un raisonnement par récurrence, en déduire que pour tout $n \in \mathbb{N}^{\geq 1}$, $U_{(n)} = U^n$.
- e) Soit $n \in \mathbb{N}^{\geq 2}$. A l'aide de la formule du binôme de Newton, retrouver $U_{(n)} = U^n$. Qu'en est-il pour n = 0 et n = 1?
- f) Montrer que $U_{(-1)} = U^{-1}$.
- 5. En utilisant les résultats de la question 4., expliciter une matrice $W \in \mathcal{M}_3(\mathbb{R})$ telle que $W^2 = C$.

*** Fin du sujet ***