TD n°14 - Applications et continuité

Applications

Exercice n°1 Déterminer des ensembles images par une application

- 1. On considère l'application $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$. Représenter f puis déterminer l'image de f, f([0;3]), f([-1;2]) et $f([-\infty;\sqrt{2}])$.
- 2. On considere l'application $g: \mathbb{R}^* \to \mathbb{R}, x \mapsto \frac{1}{x}$. Représenter g puis déterminer l'image de g, g([2;4]), g([0;2]) et $g([-1;0]\cap [0;5])$.
- 3. On consider l'application $h: \mathbb{R} \to \mathbb{R}, x \mapsto x^2 5x + 6$.
 - (a) Faire le tableau de variation de h puis déterminer l'image de h, $h(3,+\infty)$ $h(]-\infty;-1])$ et h([0;5]).
 - (b) Soit $y \in \mathbb{R}$. Déterminer le nombre d'antécédent de y par h en fonction de la valeur de y.

Exercice n°2 Injectivité, surjectivité, bijectivité d'une application

En cas de bijectivité, on donnera la réciproque. Montrer que :

$$f_1: \left\{ \begin{array}{c} \mathbb{R}_+ \longrightarrow \mathbb{R} \\ x \longmapsto 3x^2 \end{array} \right.$$

$$f_2: \left\{ \begin{array}{l}]-\infty; 1[\longrightarrow \mathbb{R} \\ x \longmapsto \ln(1-x) \end{array} \right.$$

$$f_1: \left\{ \begin{array}{l} \mathbb{R}_+ \longrightarrow \mathbb{R} \\ x \longmapsto 3x^2 \end{array} \right. \qquad f_2: \left\{ \begin{array}{l}]-\infty; 1[\longrightarrow \mathbb{R} \\ x \longmapsto \ln(1-x) \end{array} \right. \qquad f_3: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow [-1; +\infty[\\ x \longmapsto 5x^2 - 1 \end{array} \right.$$

injective, non surjective

surjective, non injective

$$f_4: \left\{ \begin{array}{l} \mathbb{R}\backslash[-2;2] \longrightarrow \mathbb{R}_+ \\ x \longmapsto \frac{x^2}{x^2 - 4} \end{array} \right. \quad f_5: \left\{ \begin{array}{l} \mathbb{R}\backslash\{3\} \longrightarrow \mathbb{R}\backslash\{2\} \\ x \longmapsto \frac{2x + 3}{x - 3} \end{array} \right. \quad f_6: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow] -1;1[\\ x \longmapsto \frac{e^x - e^{-x}}{e^x + e^{-x}} \end{array} \right.$$

$$f_5: \left\{ \begin{array}{l} \mathbb{R}\backslash\{3\} \longrightarrow \mathbb{R}\backslash\\ x \longmapsto \dfrac{2x+3}{x-3} \end{array} \right.$$

$$f_6: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow]-1;1[\\ x \longmapsto \dfrac{e^x - e^{-x}}{e^x + e^{-x}} \end{array} \right.$$

non injective, non surjective

Exercice n°3 Notion d'application réalisant une bijection

On considère l'application $f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \frac{x^2 - 3}{2x^2 + 1}$.

- 1. Montrer que l'application f n'est pas bijective. Est-elle injective? surjective?
- 2. Déterminer deux ensembles A et B, les plus "grands" possibles (au sens de l'inclusion), afin que f réalise une bijection de A sur B.

Exercice n°4 Composition d'applications bijectives

- 1. On consider l'application $f: \mathbb{R}_+^* \to]3; 4[, x \mapsto \frac{3x+4}{x+1}]$
 - Montrer que f est bijective et déterminer f^{-1} .
- 2. On considère l'application $g: \mathbb{R} \to \mathbb{R}_+^*, x \mapsto e^{2x+1}$. Montrer que g est bijective et déterminer f^{-1} .
- 3. On considère l'application $h: \mathbb{R} \to]3;4[, x \mapsto \frac{3e^{2x+1}+4}{e^{2x+1}+1}$
 - (a) Exprimer h en fonction de f et q.
 - (b) En déduire que h est bijective ainsi que h^{-1} .

Exercice n°5 Etude d'une bijection classique

On considère l'application $f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{e^x - e^{-x}}{2}$.

Montrer que f est bijective et déterminer f^{-1} .

Continuité

Exercice n°6 Etudier la continuité d'une fonction définie par morceaux

Etudier la continuité des fonctions suivantes sur leurs ensembles de définition :

$$a(x) = \begin{cases} x+1 & \text{si } x < 2\\ x^2 - 1 & \text{si } x \ge 2 \end{cases}$$

$$d(x) = \begin{cases} \frac{\exp(2x^2) - 1}{x} & \text{si } x \neq 0\\ 2 & \text{si } x = 0 \end{cases}$$

$$b(x) = \begin{cases} \frac{x^2 - x - 6}{x - 3} & \text{si } x \neq 3\\ 5 & \text{si } x = 3 \end{cases}$$

$$e(x) = \begin{cases} \frac{\ln(1+x^2)}{3x^2} & \text{si } x > 0\\ \frac{\exp(2x) - 1}{6x} & \text{si } x < 0\\ 1 & \text{si } x < 0 \end{cases}$$

$$c(x) = \begin{cases} \frac{2}{1 + e^{1/x}} & \text{si } x \neq 0\\ 2 & \text{si } x = 0 \end{cases}$$

Justifier que les fonctions suivantes sont continues sur leur ensemble de définition $\mathbb{R}\setminus\{x_0\}$, puis déterminer si elles sont prolongeables par continuité en $\{x_0\}$.

$$f(x) = \frac{x^3 + 5x + 6}{x^3 + 1} \text{ sur } \mathbb{R} \setminus \{-1\} \quad g(x) = e^{-\frac{1}{x^2}} \text{ sur } \mathbb{R} \setminus \{0\} \quad h(x) = \frac{2}{x - 2} - \frac{3}{(x - 2)^2} \text{ sur } \mathbb{R} \setminus \{2\}.$$

Exercice n°8 Savoir utiliser le TVI

Les questions qui suivent sont indépendantes.

- 1. Montrer que l'équation $x^{17} = x^{11} + 1$ d'inconnue $x \in \mathbb{R}$ possède au moins une solution.
- 2. Montrer que l'équation $\ln(x) = \frac{x^2 5}{x + 2}$ d'inconnue $x \in [1; 10]$ possède au moins une solution.
- 3. Soit f une fonction continue sur [0;1] et à valeurs dans [0;1].
 - (a) On note $g: x \mapsto f(x) x$. Quel est le signe de g(0)? de g(1)?
 - (b) Montrer que l'équation f(x) = x admet au moins une solution dans [0; 1].

Exercice n°9 Savoir utiliser le théorème de la bijection continue

- 1. On considère la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par $g: x \mapsto \frac{e^x 1}{e^x + 1}$.
 - (a) Dresser le tableau des variations de f limites comprises. En déduire que g réalise une bijection de $\mathbb R$ sur un intervalle J à préciser.
 - (b) Justifier que la bijection réciproque, notée g^{-1} , est continue et dresser le tableau des variations de g^{-1} en précisant les limites aux bornes.
 - (c) Déterminer l'expression de g^{-1} .
- 2. Soit f la fonction définie sur \mathbb{R}_{+}^{\star} par $f: x \mapsto x 2 + \ln(x)$.
 - (a) Faire l'étude complète de la fonction f limites comprises. En déduire que f réalise une bijection entre deux ensemble que vous préciserez.
 - (b) Montrer que l'équation f(x) = 0 admet une unique solution $\alpha \in \mathbb{R}_+^*$. Justifier que $\alpha \in [1, 2]$.
- 3. Montrer que l'équation $x^2e^x=1$ d'inconnue $x\in\mathbb{R}$ admet une unique solution α . Justifier que $\alpha\in[0,1]$.

Exercice n°10 Etude d'une suite définie implicitement du type $f(u_n)=k_n$ n°1

On définit sur \mathbb{R}_+^* la fonction $f: x \mapsto x + \ln(x)$.

- 1. Dresser le tableau de variation de f. En déduire que f réalise une bijection de \mathbb{R}_+^* sur un intervalle J à préciser et donner le tableau de variation de la bijection réciproque notée f^{-1} .
- 2. Soit $n \in \mathbb{N}^{\geq 1}$. Montrer que l'équation f(x) = n possède une unique solution, notée u_n , sur \mathbb{R}_+^* . Exprimer cette solution à l'aide de f^{-1} .
- 3. Justifier que la suite $(u_n)_{n\in\mathbb{N}^{\geq 1}}$ est croissante et donner sa limite.

Exercice n°11 Etude d'une suite définie implicitement du type $f(u_n) = k_n$ n°2

Soit $n \in \mathbb{N}^{\geq 1}$. On considère l'équation $x \ln(x) = n$ d'inconnue $x \in [1; +\infty[$. On admet que 2 < e < 3.

- 1. Montrer que cette équation possède une unique solution qu'on notera u_n .
- 2. Démontrer que la suite $(u_n)_{n\in\mathbb{N}^{\geq 1}}$ est croissante.
- 3. Vérifier que f(e) = e. En déduire que, pour tout $n \in \mathbb{N}^{\geq 3}$, $e \leq u_n$.
- 4. En déduire que, pour tout $n \in \mathbb{N}^{\geq 3}$, $u_n \leq n$.
- 5. En déduire que, pour tout $n \in \mathbb{N}^{\geq 3}$, $\frac{n}{\ln n} \leq u_n$. Conclure quant au comportement asymptotique de (u_n) .

Exercice n°12 Etude d'une suite définie implicitement du type $f_n(u_n) = 0$ n°1

Soit $n \in \mathbb{N}^{\geq 2}$. On considère la fonction f_n définie sur [0,1] par $f_n: x \mapsto x^n + 1 - nx$.

- 1. Etudier les variations de f_n sur [0,1].
- 2. En déduire que, pour tout $n \in \mathbb{N}^{\geq 2}$, l'équation $f_n(x) = 0$ possède une unique solution sur [0,1]. On note u_n cette valeur.
- 3. Monotonie de (u_n)
 - (a) Etudier le signe de $f_{n+1}(x) f_n(x)$ sur l'intervalle [0,1].
 - (b) En déduire que $f_{n+1}(u_n) \leq f_{n+1}(u_{n+1})$.
 - (c) En déduire la monotonie de la suite (u_n) puis la convergence de cette suite.
- 4. Démontrer que, pour tout $n \in \mathbb{N}^{\geq 2}$, $0 \leq u_n \leq \frac{2}{n}$.
- 5. En déduire la limite de la suite (u_n) .

Exercice n°13 Etude d'une suite définie implicitement du type $f_n(u_n) = 0$ n°2

Soit $n \in \mathbb{N}^{\geq 3}$. On considère l'équation $x^n + x^2 + 2x - 1 = 0$ d'inconnue $x \in \mathbb{R}_+$. On introduit la fonction $f_n : x \mapsto x^n + x^2 + 2x - 1$.

- 1. Dresser le tableau de variation de f_n sur \mathbb{R}_+ limites comprises.
- 2. Montrer que cette équation possède une unique solution dans \mathbb{R}_+ qu'on notera u_n . Justifier que $u_n \in \left]0; \frac{1}{2}\right[$.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}^{\geq 3}}$ est croissante.
- 4. En déduire que $(u_n)_{n\in\mathbb{N}\geq 3}$ converge vers un réel ℓ . Donner un encadrement de ℓ .
- 5. Justifier que u_n^n converge vers 0 lorsque n tend vers $+\infty$.
- 6. En déduire la valeur de ℓ .